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ABSTRACT 

We show that in an arrangement of n curves in the plane (or on the sphere) 
there are at least n/2 points where precisely 2 curves cross (ordinary points). 
Furthermore there are at least (4/3)n triangular regions in the complex deter- 
mined by the arrangement. Triangular regions and ordinary vertices are 
both connected with boundary vertices of certain distinguished subeomplexes. 
By analogy with rectilinear planar polygons we distinguish concave and 
convex vertices of these subcomplexes. Our lower bounds arise from lower 
bounds for convex vertices in the distinguished subcomplexes. 

1. Introduction 

A well-known problem of Sylvester states: given n points (n > 3) in the plane, 

not all on a line, must there exist ordinary lines, that is, lines which contain 

precisely two of the given points. The best answer to date is I-2]: there are always 

at least 3n/7 ordinary lines. In dual form, where one starts with an arrangement 

of lines and asks for ordinary points (that is, points incident with only two lines) 

the problem suggests two natural generalizations: we may consider families of 

pseudolines (a pseudoline is the image of  a line under a homeomorphism of the 

plane onto itself) or families of simple closed curves. The lower bound 3n/7 has 

recently been established for arrangements of pseudolines [-3]. The purpose of 

this note is to establish the lower bound n/2 for digon-free arrangements of 

curves. For  convenience we will formulate the problem on the two-dimensional 

sphere instead of in the plane. 

An arrangement of curves on the sphere is a finite family of simple closed 

curves on the sphere such that each pair of curves have exactly two points in 

common and actually cross at these intersection points. These intersection points 
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are called vertices or points of the arrangement. A vertex of an arrangement is called 

ordinary if it lies on exactly two curves of the arrangement. An arrangement of 

curves is called trivial if  there are precisely two vertices. All arrangements will 

henceforth be assumed non-trivial. (Actually, requiring an arrangement of curves 

to contain no digons that is, regions with just two incident vertices also rules out 

the trivial arrangement of curves). 

We state the following theorems immediately and outline their proofs in 

Section 3. 

THEOREM 1. In a digon-free arrangement on n curves, n > 3, there are at 
least n ]2 ordinary vertices. 

THEOREM 2. In a digon-free arrangement of n curves there are at least 
(4/3)n triangles. 

2. Definitions and notation 

An arrangement can be thought of as a graph on the sphere whose vertices are 

the vertices as previously defined and where an edge is a minimal arc lying in a 

curve of the arrangement having a pair of vertices as endpoints. In the usual way 

this graph determines regions which are closures of connected components of the 

complement of the graph. These vertices, edges and faces are the 0-cells, 1-cells 

and 2-cells of a complex on the sphere 

If  G is a curve of the arrangement, G divides the sphere into two connected 

components. We call the closure of such a component a combinatorial half-plane. 

If H is such a combinatorial half-plane corresponding to the curve G, we define a 

complex I (G,H) as follows: the vertices of I (G,H) are those of H \ G ;  the edges 

and faces of I(G, H) are those of H which have the further property that all their 

incident vertices are in H \ G. 

If  e is an edge of the arrangement and has x as one endpoint then x(e) is that 

edge of the arrangement, distinct from e, having x as one endpoint, and lying on 

the same curve as e. 

Let K be a subcomplex of I(G, H). Suppose x is a vertex in the boundary of 

[ K I, the union of the cells of K. We call x a convex corner of K if the edges at x, 

but lying in K, are consecutive in the clockwise or counterclockwise order around 

x (equivalently, the edges at x but not in K are consecutive around x) and for each 

edge e at x in K, x(e) (E K. We call x concave if the edges at x lying in K are con- 

secutive around x and if there exist two edges e and e', at x and lying in K, where 
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and x(e') ~ K but x(e) ~ e'. Note that not all vertices in the boundary of I K I x ( e )  

are corners (see Figure 1). 

z 

xl u 

y 

x 2 

Fig. 1 

I((7, I-I) is shown in heavy line. I (tT, H) has the following convex corners: w, x, 
y, z. I (G,H) has u as a concave corner. The tepees T(x, G), T(z, G), T(w, G) 
are minimal but T(y, G) is not. 

Now let x be a convex corner of  K and let el, e2, ' , ' ,ek be the consecutive 

edges (in the order of their subscripts) at x not in K. Let e~ have endpoints x and x~. 

I f  K = I(G, H), then xi ~ G and we define an arc on G containing these x, as 

follows. The direction around x for which the e~ are consecutive in the order of 

their subscripts induces a direction on G. If  we traverse an arc from xl to xn on G 

in this direction we encounter the x~ in the order of  their subscripts. (We may, 

however, encounter other vertices of  the arrangement; Figure 1 shows an 

example). Call this arc y. 

There is a simple closed curve F formed by xxl ,  ~, xkx and it divides the sphere 

into two complementary domains, one of  which lies in H. The complex consisting 

of  F and the vertices, edges, and faces in the aforementioned domain is called a 

tepee and denoted T(x, xl ,  ..., Xk) or, sometimes for brevity, T(x, G). (Henceforth 

we shall avoid circumlocutions when dealing with complexes in a half-plane H by 

using words such as " inter ior"  or "simply-connected" with the understanding 

that we mean relative to  the space H rather than the whole sphere.) The vertex x 

is the apex of the tepee and x~ and x k are end vertices of  the base or simply end 

vertices. It should be noted that the notation T(x, G) is ambiguous in the case 

where {x} is a component of K because there are, in this case, as man y tepees 
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with apex x as there are edges at x. Such isolated vertices will need somewhat 

special handling anyhow so there should be no confusion about the notation. 

3. Outline of proofs of Theorems 1 and 2 

Tepees and convex vertices are useful for the study of ordinary vertices because 

of the following lemmas. The proof of the first, which is somewhat lengthy and 

tedious, we defer until Section 4 so as not to obscure the essentially simple lines 

of the proofs of the theorems. 

LEMMA 3. I f  K is a simply-connected complex contained in I(G,H) then K 

contains at least two corners convex in K unless K is a single vertex. 

COROLLARY 4. Each component of I(G,H) contains at least two vertices which 

are convex in that component and hence in I(G,H), unless that component 

consists of a single vertex. 

LEMMA 5. I f  X and y are distinct convex corners in the same component 

of I(G, H) then the two tepees T(x, G) and T(y, G) intersect in at most a pair of 

end vertices on G. 

PROOF. Let Fx be the bounding circuit of T(x, G), composed of edges xxl, 

and xx k and an arc ~, joining xl and xk on G. Let Fy be the bounding circuit of 

T(y, G), composed of edges YYx, YYt and an arc yy joining Yl and Yt on G. If the 

tepees intersect, then Fx and Fy intersect. They cannot do so along the edges xxi 

or yyj so )'x n ~y # 0. However, if yx and ),y intersect in more than a pair of vertices, 

then ~x c ),y or),y = ~x. Suppose the latter case for example. Then T(y, G) ~ T(x, G). 

Now there cannot be any path in the graph of I(G, H) connecting x to y, for if 

there were, this would contradict the consecutivity condition on the convex 

corner x. 

LEMMA 6. For any curve G and associated combinatorial half-plane H,  

I(G,H) contains at least two tepees with distinct apexes which are minimal 

with respect to containment and are of the form T(x, G), unless I(G, H) consists 

of a single vertex. 

PROOF. I(G, H) is not empty, for if it were H would contain digons. 

In the special case where I(G, H) consists of two isolated vertices the lemma 

holds because at each of these vertices, among the various tepees which exist 

there, there is precisely one tepee not containing the other vertex, and hence 
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minimal. The more general case where I(G, H) consists of k isolated vertices is 

an easy induction. When an isolated vertex x and its incident edges is added, at 

most one minimal tepee in the previous complex can be ruined, but exactly one 

new one is created at x. Consequently, unless I(G, H) consists of a single isolated 

vertex, we can assume that I(G, H) has a component K with more than one 

vertex. Then Corollary 4 states that K possesses two corners, x and y, which are 

convex in K (and hence in I(G, H)). Since the associated tepees T(x, G) and 

T0' ,  G) intersect in at most two vertices, according to Lemma 5, then the minimal 

tepees contained in T(x, G) and T(y, G) respectively are distinct. 

LEMMA 7. Let T(x, xl,x2,. . . ,xp) be a tepee. 

(i) I f  p = 2, then x is ordinary. 

I f  the tepee is minimal then 

(ii) the circuits formed by xx i, xixi+l, xi+lx (i -- 1,2, . . . ,p - 1) each bound 

a single triangular cell of the base complex, and 

(iii) if p > 2 then x2,xa, ...,Xp_ 1 are ordinary. 

PROOF. (i) For  every curve through x there are one or more edges xx, 

contained in that curve. To establish part (i), it is only necessary to show that 

two such edges cannot both terminate at the same xi. This fact, which will be 

used again later, is a case of the result: two vertices, x and y, of a digon-free 

arrangement of curves are joined by at most one edge. To establish this, let 

el, e2,.-., e, be an enumeration of the edges at x in consecutive order. If e, and ej 

both terminate at y and i < j then e~+ 1 also terminates at y. Now e, and e,+ 1 must 

also be consecutive around y or there would be a curve passing through y twice, 

which is impossible. Edges ei and ei+l are also consecutive around y .  Thus ei 

and ei+ x enclose a digon, which is a contradiction. Therefore part (i) is established. 

(ii) If the circuit F i formed by xxi, xixi+x, xi+xx does not bound a single 

region which is a triangle, then I(G, H) is disconnected and contains a component 

interior to F~, say A. If A is an isolated vertex, clearly we can choose a tepee from 

A contained in T(x, xl, ...,Xp), contradicting the minimality. Otherwise let wl 

and w2 be two convex vertices of A. It is easy to see that at least one of the tepees 

T(w,, G) is contained in Fi. This contradicts the minimality of T(x, x l , ' " ,  Xp). 

(iii) This is immediate from (ii) and the fact that curves of an arrangement 

cross each other where they meet. 

We now begin the proof of Theorem 1. The determination of the bound for m, 

the number of ordinary vertices, proceeds as follows. (The author wishes to thank 
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E. Bender for a suggestion improving an earlier counting argument.) Let k be 

the number of distinct triples (x, G, H) which have these properties: 

(a) H is a combinatorial half-plane determined by G, 

(b) x ~ n ;  

(c) x is ordinary and either lies on G or is the apex of a minimal tepee with 

base on G. 

COROLLARY 8. f o r  each pair (G, H) satisfyin9 condition (a) there are at least 

two vertices x satisfyin9 conditions (b) and (c). 

PROOF. By Lemma 6, each of the half-planes H determined by G either has two 

minimal tepees with distinct apexes or has a single vertex not on G. In the former 

case, Lemma 5 and Lemma 7 (i) and (iii) give the result. Now consider the latter 

case, where I(G, H) is a single vertex x. If el, e2," ' ,  ek (k > 4) are the edges at x 

then let the other endpoints of these e i be xi. Each x~ ~ G. Since curves cross 

where they meet and the arrangement contains no digons, each x~ is ordinary. 

Thus, in this case, we have at least four ordinary vertices in H. 

Now there are 2n possible pairs (G, H) where H is a half-plane determined by 

G. For each of these pairs there are, according to Corollary 8, at least two vertices 

satisfying (a) and (b). Thus k > 4n. 

Now consider a particular ordinary vertex x. There are precisely two curves 

containing x and they provide four triples (x, G, H) satisfying conditions (a), (b), 

and (c). Additional triples involving x and satisfying these conditions may arise 

when x is the apex of minimal tepees to curves G j, each Gj passing through two 

or more consecutive x~. There can be at most four such curves Gj for if there were 

more, then two consecutive points x~ and xi+ 1 would be adjacent along two 

different curves, say G 1 and G 2. Then x i and xi+l are joined by two edges, and as 

we saw in the proof of Lemma 7 (i), this cannot happen in a digon-free arrange- 

ment of curves. Thus there are at most four curves Gj. (Note that there could be 

as few as one in the case where x = I(G, H) for some G and H.) This implies that 

for a given ordinary vertex x there are not more than eight triples (x, G, H) satisfy- 

ing conditions (a), (b), and (c). Thus k < 8m. Combining the last two inequalities, 

we arrive at the result of the theorem: m > n/2. This concludes the proof of 

Theorem 1 (except for Lemma 3 whose proof is in Section 4). We also can conclude 

the following theorem. 

THEOREM 9. In a digon-free arrangement of n curves there are at least 

4/3 n triangles. 
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PROOF. If T(x, G) is a minimal tepee, Lemma 7 (ii) shows that it contains a 

triangle incident with G. By Lemma 6 there are at least four minimal tepees of the 

form T(x,C,)for a fixed G, so there are at least four triangles incident 

with G. 

Now let k be the number of pairs (T, G) where T is a triangle with an edge on 

the curve G. If P3 is the number of triangles in the arrangement, k = 3p3. But 

each curve is incident with at least four triangles, so k > 4n whence 3p3 => 4n and 

Pa > 4n/3. 

It should be noted that Griinbaum [1] has made two conjectures concerning 

the results of Theorems 1 and 2. 

Conjecture I. A digon-free arrangement of n curves has at least n - 1 ordinary 

vertices. Furthermore, if it has exactly n - 1  then n - 1 (mod 3). 

Conjecture II. A digon-free arrangement of curves has at least 211-4 triangles. 

4. Convex corners 

In this section we intend to prove Lemma 3. Let K be a complex which satisfies 

the hypotheses of Lemma 3, but which has less than two convex corners and which 

has the minimal total number of cells (of all dimensions), say t, among all 

complexes with these properties. We proceed by deducing properties that such a 

complex K would have to possess and then by discovering that these properties 

imply the existence of two convex corners, which is a contradiction. The first 

stage is to show that K is a simple circuit with interior. Thereafter we focus 

attention on the pattern of convex, concave and other vertices on the bounding 

circuit of K, and on the curves which form these boundary vertices. The permis- 

sible patterns turn out to be fairly restrictive and always include two convex 

vertices. 

We begin the first stage by making several observations. 

Observation I. K is connected. For if K has K 1 and K 2 a s  components, by the 

minimality of K, each of K1 and K 2 either has two convex corners or consists of 

a single vertex. In any combination of these cases, K will have at least two convex 

corners, a contradiction. 

Observation I1. The 1-skeleton of K (the graph consisting of all vertices and 

edges of K) is 2-connected, that is, it cannot be disconnected by removal of a 

single vertex. For otherwise K could be written as K~ w K2 where Kl r3 K2 is the 

single vertex x. By the minimality of K, each of KI and K2 has two convex 
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corners, at most one of which can be x. Consequently, K has at least two convex 

corners, a contradiction. 

Observation III. There exists a simple circuit F where K - - - F  u int F. To 

establish this, we first note that K does not consist of a single edge with its end 

vertices, because the latter would both be convex. Now the 1-skeleton of K 

contains a circuit, for otherwise i t  would not be 2-connected unless it consisted 

of a single edge, the case just ruled out. Let F be a simple circuit in the 1-skeleton 

of K which is maximal with respect to the number of cells of K in F LJ int F. 

Since K is connected, either every cell of K lies in F • int F or there is an edge 

(x, y) E K with x ~ F, y 6 F u int F. In the latter case let z be a vertex of F different 

from x. Since the 1-skeleton of  K is 2-connected, there is a path from y to z 

missing x. From this we can extract a simple subpath missing int F from 3' to 

some point of F other than x. Let P denote this path with (x, y) appended at the 

beginning. Out of F and P we can construct a simple circuit which encloses more 

cells than F, contradicting the maximality of F. Thus each cell of K lies in 

F u int F. Since K is simply connected, K = F LJ int F. 

Now the corners of K clearly lie on F. In preparation for the study of the 

patterns of these corners, we need to make some definitions. Two corners x and y 

are called adjacent provided there is an arc ? contained in F with x and y as 

endpoints and such that ~ contains no other corners of K (it may contain vertices 

on the boundary F which are not corners). Such an arc connecting two adjacent 

corners is called a oeodesic arc. Clearly a geodesic arc is contained entirely in 

some curve of the arrangement. 

Suppose K has a concave corner x and suppose a and b are either edges or 

geodesic arcs of F which meet at x. For any edge or a geodesic arc e, denote by 

G(e) that curve of the arrangement on which e lies. Define A(x, a) to be the arc 

contained in G(a) with x as one endpoint and the other endpoint, denoted w(x, a), 
being the first vertex of  F encountered as one traverses G(a), beginning at x, in 

the direction from x which avoids the edge a. A(x, a) is said to surface (or to be a 

surfacing arc) if w(x, a) belongs to the maximal geodesic arc containing b; other- 

wise A(x, a) is said to dive (or to be a diving arc). A(x, b) and the notions of  

surfacing and diving for this arc are defined similarly by interchanging the roles 

of a and b. Figure 2 illustrates these notions. 

Let y be another concave corner of K connected to the adjacent concave 

corner x by the geodesic arc ~. Let c and d be the edges of F at y, the notation so 
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A(y,d) ~ . ~ ~ . , .  ,'''~'~ 

Fig. 2 

A (x,a) is a surfacing arc, A (y,d) is a diving arc, F (shown in part). 

chosen that b, c~7.  Then we may assert our fourth and final observation. 

Observation IV. For adjacent concave vertices x and y and the rest of  the 

notation as above, A(x, a) and A(y, d) cannot both dive. For if they did, we could 

remove a complex from K and contradict the minimality as follows. Let H(a) 
and H'(a) be the half-planes determined by the curve G(a), H(a) being the one 

which contains b; let H(d) and H'(d) be the half-planes determined by the curve 

G(d), H(d) being the one which contains c. In case A(x, a) and A(y, d) intersect 

once, let R = K n H(a) O H(d) and then define K '  to consist of all cells lying in 

the closure of K / R .  Since K was assumed minimal, K '  has at least two convex 

corners. None of these convex corners lies along A(x, a) or A(y, d) except possibly 

at w(x, a) in the case when w(x, a) = w(y, d) and in this case, w(x, a) is convex in 

K also. In any case, restoring R leaves at least two convex corners in K, a con- 

tradiction. In case A(x, a) and A(y, d) are disjoint or intersect twice, consider the 

complexes H'(a)  n K and H'(d) n K. Each of these has two convex corners and 

again none can be along A(x, a) or A(y, d) except possibly at w(x, a) or w(y, d). 
Thus each complex has at least one convex corner other than w(x, a) and w(y, d) 
and these will be convex corners in K also. These corners cannot be identical 

since ]A(x,a)nA(y,a)[= 0 or 2 whence these corners are on different parts 

of  the arc F .  Thus J has at least two convex c3rners, a contradiction. 

We can describe the structure of K around the boundary F with fair precision 

for complexes K which satisfy the hypotheses of Lemma 3, have less than two 

convex corners, are minimal for these properties with respect to the total number 

of  cells, and which consequently satisfy observations I, II, and III. In fact, we 

can describe the structure of K with enough precision so that we can show that 

K has at least two convex corners, contrary to its definition. 
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LEMMA 10. l f  x is a concave vertex of K and a and b are edges o f f  touching 

x then at least one of A(x, a) and A(x, b) dives. 

PROOF. If both surface, then the curves G(a) and G(b) intersect at least three 

times. 

The concave corner x is said to be of  dual type if one of A(x, a) and A(x, b) 

dives and the other surfaces. 

LEMMA 11. There exists a concave corner of dual type in K. 

PROOF. First note that there must exist a corner or else F is one of the curves 

of  the arrangement. Since K c I(G, H), it would follow that curves F and G do 

not intersect, a contradiction. Second note that if there is only one corner, then F 

is part  of  a self-intersecting curve of the arrangement, again a contradiction. Thus 

we can assume K has two corners. Since K is assumed not to have two convex 

corners, at least one of these, say x, is concave. Now suppose x is not of  dual type. 

Let w and y (not necessarily distinct) be corners of  K adjacent to x which are 

encountered by proceeding in the two possible directions around F from x. I f  

w = y and this corner is convex then F is composed of parts of  two curves which 

intersect each other more than twice. I f  w = y and this corner is concave, then l" 

is composed of  parts of  two curves which either intersect each other more than 

twice or do not intersect the curve G. Thus w and y are actually distinct. Since K 

does not have two convex corners, w and y are not both convex and one of  them, 

say y is concave. Let ~ be the geodesic arc connecting x and y, and let a and b be 

the edges of  y touching x and y respectively. Since we assumed that x is not of  

dual type, Lemma 10 implies that A(x, a) dives. Now A(y, b) must surface or we 

would contradict IV. Consequently, applying Lemma 10 to the vertex y, we 

deduce that y is of  dual type. This proves the lemma. 

Let x and y be concave corners of  dual type with surfacing arcs A(x, a) and 

A(y, b) respectively. Then x and y are said to be consistent if the vertices w(a, x) 

and w(y, b) separate x from y on the circuit F. 

Now let Xo, xi ,  "", xs be a maximal sequence of concave vertices which are all 

of  dual type and mutually consistent and which are such that each xi is adjacent 

to x~+l (provided s > 0). Define y and z to be adjacent corners to x o and x, 

respectively and such that y, x 0 , ' " ,  xs, z are consecutive in that order in a uniform 

direction around F. Let eo be the geodesic arc connecting y to x o and let e,+l be 

the geodesic arc connecting x, to z. I f  s > 0, define e~ as the geodesic arc connecting 
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X~_ 1 to x~ for i = 1, 2, " ' ,  s. Note that y and z may be identical with xs and Xo 

respectively, or y and z may be identical; we shall, however, shortly rule out these 

possibilities. Because of the consistency of the x~, we may assume with no loss 

of  generality that A(xi, el) dives while A(x~, e~+l) surfaces for i = 0, 1, ..., s. See 

Figure 3. 

Fig. 3 

LEMMA 12. I f s  > 0, A(xi, e~) N A ( x i + l ,  ei+1) = O, for  i = O, 1 , . . . , s  - 1. 

PROOF. If the two arcs were to intersect, then G(e~) and G(e~+ i) would intersect 

at least three times. 

Now A(xi, e~) divides F into two arcs Ri and Li, one of which contains ei and 

the other of which contains e~+l, for i = 0, 1, ...,s. Choose the notation so that 

ei e L i while e~+ 1 E R~. As a simple consequence of Lemma 12 we have the following 

lemma. 

LEMMA 13. 
L o c L l c . . . C L  s and 

R o ~ R I = ' "  = R  r 

COROLLARY 14. y e Lo and z ~ Ro; fur thermore  y ~ z, x~, and z ~ x t. 

PROOF. That y ~ Lo and z e Ro follows immediately from Lemma 13 and the 

fact that z e Rs. For the remainder, it is only necessary to show that neither y 

nor z belongs to Lo n R0. If  y ~ Ro then y = W(Xo, e0) and G(eo) crosses itself at 

y, a contradiction, or eo u A(xo, eo) is a curve of the arrangement. In the latter 

case this curve would not cross G since K c I(G, H), and this is a contradiction. 

As regards z, because A(xs, e~) dives, z is in the relative interior of the arc R~ and 

thus in the relative interior of Ro. Consequently it cannot lie in L o. 

Since z ~ Xo and since Xo, x l , ' " ,  x~ is a maximal consistent sequence of distinct 

dual type concave vertices, z must be convex or not of dual type or it must be of 
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dual type but inconsistent with x~. The latter two cases violate IV because of  

Lemma 10. Therefore neither case can occur and z must be convex. Since we are 

assuming K has no more than one convex corner, and since y ~ z, the corner y, 

which we henceforth denote Yo, must be concave and either not of  dual type or of  

dual type but not consistent with Xo. In either case, A(Yo, eo) dives. Let Yl be the 

corner of  K other than xo which is adjacent to Yo. Let the diving arc A(Yo, eo) 

divide F into arcs L~ and Ro' where yl  e L~ and Xo ~ R~. Since G(eo) does not 

cross itself, L~ c Lo. I f  K does not have two convex corners, then Yl is concave. 

(Note that Yl ~ z since Yl e L~ c Lo.) By applying Lemma 10 and 1V we see that 

y~ is of  dual type but inconsistent with xo. 

Let yl ,  Y2, "", Yt be a maximal consistent sequence of concave vertices of  dual 

type. Just as with the x~ we can define L'~ and R~ at y~ and we have 

Lo = Ld D L~ D " "  = L;. 

Now if w is adjacent to Yt but different from y,_ l it follows that w e E, c Lo, 

hence w r Now by the same type of analysis as that applied to z we show 

that w is a convex corner. Consequently K has at least two convex corners and we 

have therefore shown that all simply connected complexes contained in I(G, H) 

have at least two convex corners. This completes the proof  of  Lemma 3. 
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